
Recognition of visual stimulus features depends on the flow of
action potentials from retinal ganglion cells to the brain. The
basic features of time-varying stimuli can be estimated from the
activity of the ganglion cell population by using artificial neural
networks, discriminant analysis or linear decoders1–6. For a com-
pletely stationary stimulus, the activity in the visual system is
largely reduced, however, because this system responds mainly
to changes7,8. This is consistent with the observation that visual
perception fades away when the image of an object is stabilized
artificially on the retina9,10. Therefore, during normal fixation
in a stationary visual world, relative image movements that turn
any stationary visual scene into a spatiotemporal varying image
on the retina are necessary to maintain perception11,12.

Reconstructing time-varying stimuli with linear decoders or
artificial neural networks saturates as spike trains from 8 to 14
retinal ganglion cells are recruited1,6. Reconstruction at this point
is still lacking much of the true stimulus, probably as a conse-
quence of the phototransduction process and broadband noise in
the retinal circuitry1,4. By contrast, stimulus estimation using dis-
criminant analysis or neural networks is nearly perfect when an
external reference signal temporally locks the estimation proce-
dure to the time intervals following each stimulus change2,3,5.
With this timelocked procedure, latency differences and the initial
spike rate are included into each single estimation. Latency and
rate are proposed to be the most important encoding mechanisms
for, for example, changes in the magnitude of contrast5,13,14.

Eye and head movements during fixation of a stationary stim-
ulus induce spatiotemporal image changes on the retina. Fixational
eye movements influence the firing probability of single cortical
cells, and it has been speculated that this could produce synchro-
nous activity15–19. If synchronization reliably encodes stimulus
changes, then it could be used to determine latency and initial rate.
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Image movements relative to the retina are essential for the visual perception of stationary objects
during fixation. Here we have measured fixational eye and head movements of the turtle, and deter-
mined their effects on the activity of retinal ganglion cells by simulating the movements on the
isolated retina. We show that ganglion cells respond mainly to components of periodic eye
movement that have amplitudes of roughly the diameter of a photoreceptor. Drift or small head
movements have little effect. Driven cells that are located along contrast borders are synchronized,
which reliably signals a preceding movement. In an artificial neural network, the estimation of
spatial frequencies for various square wave gratings improves when timelocked to this synchroniza-
tion. This could potentially improve stimulus feature estimation by the brain.

We have therefore examined the relationship between fixational
eye movements and the activity of retinal ganglion cells in the tur-
tle. We determined whether such movements synchronize gan-
glion cell activity, and whether feature estimation is better when
it is timelocked to stimulus changes rather than when it is not. We
show that fixational eye movements do exist in the turtle, and that
they drive and synchronize retinal ganglion cells. Feature estimation
is improved when timelocked to this synchronization, which is dri-
ven by the stimulus changes induced by eye movement.

RESULTS
Turtles show miniature eye movements during fixation
We measured eye and head movements of the resting turtle
(Pseudemys scripta elegans) using video-oculography. Because
our study was focused on image motion on the retina of a sta-
tionary stimulus during fixation, we did not analyze large-ampli-
tude movements such as saccades and head turns, which
completely change the direction of gaze.

During these ‘stable’ periods of gaze, residual head move-
ments (11.77 ± 8.59 µm/s velocity on the retina; n = 80) still
contributed to the total image movement (Fig. 1a, inset). After
subtracting head movements, a small and slow drift-like eye
movement component (6.7 ± 2.9 µm/s) persisted, which was
superimposed by larger and faster periodic components. Fast
Fourier transform (FFT) analysis identified a broad peak in the
spectrum of amplitude density at about 5 Hz for the periodic
component (Fig. 1a). Its x and y amplitude distribution peaked
at about 5 µm on the retina, which yielded oblique movements
of about 7 µm (Fig. 1b). The velocity (v) of forward and back-
ward movement increased roughly linearly with amplitude (a)
and was described by v (µm/s) = 256 ± 20 (s–1) × a (µm);
adjusted R square (R2) = 0.48. 
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Thus, turtle eyes move periodically during fixation with reti-
nal amplitudes on the order of the diameter of a photoreceptor20.
Because there are clear interspecies differences in eye movements,
we do not use terminology derived from other species but use
the general terms ‘drift-like’ and ‘periodic’ to describe the two
fixational eye movements. 

Fixational eye movements increase retinal activity
Instead of moving the fixating eye, an image was moved on an
isolated retina and the effects of this simulated fixational move-
ment on ganglion cell activity were measured. Single- and multi-
unit activities were recorded by using a square 10 × 10
multi-electrode array. After a control period in darkness (Fig. 2a,
‘dark’), a stationary square wave grating—the contrast borders
of which were aligned with the electrode rows—was projected
onto the retina (Fig. 2a, ‘light on’). This elicited an initial, tran-
sient population response that adapted within a few seconds to
a steady-state value below that observed in darkness (Fig. 2b).
This reduction in activity to prolonged illumination with the sta-
tionary grating was seen in most units, even in those that were
initially excited by light on (Fig. 2a, arrows).

Spatial displacements were introduced that mimicked the
spatial and temporal characteristics of the video-oculographic
measurements obtained in the intact animal, which simulated
the image flow on the retina induced by actual turtle eye move-
ments (Fig. 2a, ‘wobbling’). This immediately increased the
activity of both the population and single units. The following
control with a stationary grating confirmed that the recording
conditions had not changed. 

Mean single-unit activities during the dark, stationary and
wobbling conditions were 0.89 ± 0.16, 0.31 ± 0.18 and 0.71 ± 0.17
spikes/unit × s, respectively. The mean values during darkness cor-
responded to those from a previous study21. The steady-state sta-
tionary and wobbling values were significantly different (Fig. 2b;
measured in 40-s intervals during steady state with 1-s time bins;
t-test, p < 0.0001). The mean values from eight retinas were 0.43
± 0.49 and 0.79 ± 0.93 spikes/unit × s, respectively (n = 246 units).
Activities varied considerably because different proportions of the
various ganglion cell types were recorded in different retinas. In
a given experiment, activity was always significantly higher during
the wobbling than during the stationary condition.
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Fig. 1. Eye movements of the turtle during fixation. (a) Mean amplitude
density spectrum of the components of eye movement. Two-second time
intervals such as those in trace 3 of the inset were analyzed by FFT and
averaged. Data are collapsed from horizontal and vertical movement.
The first peak correlates to the drift-like eye movement and the second
peak at around 5 Hz correlates to the periodic component (shaded area
represents s.d.; n = 80). Inset shows the original video-oculographic
recording of total pupil movement (1), head movement (2) and pure eye
movement (3 = 1 – 2). Only horizontal movement is shown. Scale bar
indicates movement amplitude in the focal plane of the Eyelink camera.
(b) Peak amplitude distribution of the periodic component (n = 1,500).
Inset shows the idealized stimulation scheme used for simulating periodic
movement. The rising (and falling) time of movement steps was 5 ms,
with speed adjusted linearly to amplitude as found in natural movements. 

Fig. 2. Periodic eye movements increase retinal activity. (a) Continuous
recording from 54 units during darkness, after switching on a stationary
square wave grating and during wobbling of this grating. The grating was
wobbled using the time course of the original periodic eye movement
data shown in Fig. 1. At the end, wobbling was stopped for control mea-
surements. Arrows indicate examples of units that were initially excited
by light on, but were later inhibited during prolonged illumination with
the stationary grating. The grating spatial period was 1.35 cycles/mm
(each row of electrodes of the multi-electrode array was aligned with a
contrast border). (b) Total population and mean single-unit activity from
data shown in (a); bin width, 1 s. Horizontal lines show average activity
for the steady state under each condition.
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Fig. 3. Single-unit responses to fixa-
tional eye movements. (a) PSTH of a
single unit in response to a contrast
border wobbling under an idealized
movement scheme (top trace). This
unit responded with different proba-
bilities to forward and backward
movement. Stimulation, 5 Hz; duty
cycle, 0.5; amplitude, 5 µm; grating
frequency, 1.35 cycles/mm; bin width,
2 ms; 500 repetitions. A probability of
1 corresponds to 1 spike/bin (500 Hz)
for one repetition. Dashed line indi-
cates 99% confidence limit in this and
the following figures. Gray curves
indicate Gaussian fits of the data.
(b) Lower frequency wobbling of
another unit (stimulation, 2 Hz; duty
cycle, 0.7; amplitude, 5 µm; 600 repe-
titions). Latency (arrow indicates the
crossing point of Gaussian fit with
confidence limit) varied around
100 ms. Inset shows that displace-
ment of the wobbling contrast bor-
der in 10-µm steps yielded receptive
field–like optimum curves for peak
response probabilities and latencies.
Latencies are plotted with decreasing
values upwards. (c) Responses of a
single unit to a drifting contrast border (velocity, 20 µm/s; bin width, 20 ms; 65 repetitions). (d) Response of the same unit to the same drift, 
superimposed with periodic 5-Hz, 5-µm amplitude wobbling (bin width, 20 ms; 65 repetitions).

These results show that transforming an originally stationary
image into one that varies spatiotemporally—thus mimicking real
fixational eye movements—enhances retinal activity. 

Single-unit response profiles to fixational movements
For the analysis of single-unit activity, we used idealized step-like
movement schemes within the range of the movement data
because we could control the independent variables better. The
occurrence of a spike in single units was correlated significantly
with movement steps (Fig. 3a). In some units, significant respons-
es were reached with amplitudes as small as 3 µm on the retina.
For amplitudes between 5 and 9 µm, the relative peak response
probability (p) increased roughly linearly with the amplitude (a)
of the movement step (p = 0.21a; R2 = 0.97, n = 12). Stimulation
with wobbling frequencies at about 5 Hz led to the initially unex-
pected result that responses had very short latencies (Fig. 3a).
Analysis with 2-Hz stimulation showed that the average latencies
were 107 ± 26 ms (n = 100 units; Fig. 3b). Therefore, this phase
lag aligned responses to forward movements with the following
backward movement, and vice versa, for wobbling at 5 Hz.

Latencies and peak response probabilities depended on the
position of the contrast border within the receptive fields of the
cells (Fig. 3b, inset). Peak response probabilities and latencies
followed optimum curves, with the maximum peak probability
close to the position where minimum latency was measured.
Optimal positions were often displaced from the electrode posi-
tions because the receptive fields were generally not centered
around the electrodes. Different units responded differentially
to forward and backward movements. Some units responded to
movement in both directions either with the same probability or
with different probabilities, whereas other units responded only
in one direction (Fig. 3a and b). 

So far, the possible effects of the small head or drift-like eye
movements, as seen in the oculographic measurements, had been
neglected. To study these effects, responses to gratings that drift-
ed with constant velocity were compared with responses to grat-
ings with the same mean drift but with superimposed periodic
components (Fig. 3c and d). The threshold for a significant
response to drift alone was around 20 µm/s for the best units that
we recorded (Fig. 3c). This is near the upper limit of the mea-
sured values for drift and head movements in the intact animal
during fixation. Therefore, under these viewing conditions slow
movements do not seem to have a principal role. Superposition
of drift with periodic movement showed that there were signifi-
cant responses to the periodic components (Fig. 3d). As above,
peak response probabilities followed the profiles of the receptive
fields. Although higher drift speeds (tested up to 1.6 mm/s) pro-
duced significant responses to drift alone, the periodic respons-
es to superimposed periodic movement were conserved or even
enhanced (data not shown).

This shows that ganglion cells located along a contrast bor-
der are driven mainly by the periodic eye movement components,
even in the presence of drift. For each cell there exists an optimal
position of the contrast border, at which the responses show high-
est probability and shortest latency.

Synchronization reliably encodes movement steps 
We studied how reliable stimulus movement can be detected

from the activity from single and multiple units. We defined syn-
chronization as near-coincidence firing between units if correlat-
ed spikes were centered around zero in the cross-correlograms22.

Simulated periodic movements synchronized units that were
aligned with contrast borders. On average, 25.7 ± 23.2% (n = 120)
of the cells were synchronized by a wobbling grating (Fig. 4a).
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Synchronization was rather broad, with a mean width of the
Gaussian fit of 31.9 ± 6.5 ms (n = 60 synchronized pairs). Shuf-
fling of the cross-correlograms (the ‘shift predictor’; Fig. 4a,
gray line) led to distributions that were very similar to the raw
correlograms. Synchronization was absent or below confidence
levels in the corrected correlograms, after subtracting the shift
predictor from the raw data (n = 60). This strongly indicated
that synchronization was caused by covariation in firing rate,
which was driven by the simulated eye movements, and was
not the result of internal connectivity or common input. This
was supported by the fact that no synchronization could be
detected with a completely stationary grating or in darkness
(tested with the same cell pairs). Synchronization did not
depend on distance of the synchronized units (measured in the
range 0.4–4 mm).

We took the position of the brain, which ‘sees’ only incoming
spike trains, and determined the probability that a synchronized
activity is preceded by a movement step (reverse correlation).
First we determined synchronized units, using the measured 32-
ms mean synchronization width identified above as an addi-
tional criterion. This was done for pairs, triples and quadruples
of cells. From these synchronized pairs (or triples or quadru-
ples), we then selected those spikes that occurred within 32 ms of
each other from the total spike trains. These synchronized spikes
(such as those in Fig. 4a) were taken as reference time points (to
= 0) and cross-correlation was done with the preceding move-
ment steps (Fig. 4b). Each reverse correlation was fitted with a
Gaussian, using width and crossing of significance level as mea-
sures for temporal precision and time delay, respectively. The
mean time delay, which indicates the time that movement

occurred before the synchronized spikes, was –91 ± 3 ms (n =
60). The mean width for the reverse correlation was 33 ± 1 ms (n
= 60). As expected, measured synchronization between multi-
ple units was rare, because the fraction (nsync/ntotal) of synchro-
nized spikes (nsync) in the total spike number (ntotal) of the
respective synchronized units decreased from 0.288 (pairs) to
0.090 (triples) to 0.016 (quadruples).

We calculated the reliability for coding the preceding move-
ment. First, the crossing points of the Gaussian fit with signifi-
cance level were determined (Fig. 4b). Second, the probabilities
from the time bins between these points were summed up. This
value was related to the sum of probabilities from all time bins,
which yielded a relative value of ‘probability correct’. It indicates
the percentage of synchronized spikes that encode preceding
movement within the time window determined by the signifi-
cant part of the reverse correlations.

We then compared the results from synchronized units with
those obtained from single units (Fig. 4c). The mean ‘probabili-
ty correct’ for spikes from single units was 0.5. This value
increased steeply to 0.9 with two synchronized units, and reached
unity when the synchronized spikes of four units were examined.
To test whether the high values of probability correct for syn-
chronized units were caused by internal connectivity, we shuf-
fled the trials. We found no statistical difference between shuffled
and unshuffled groups; therefore, the results are due to stimu-
lus-driven synchronization. Thus, if the brain had to decide
whether a stimulus movement step preceded a spike from a sin-
gle unit, it would be wrong in 50% of the cases; however, it would
be close to perfect if synchronized spikes arrived.

Synchronization improves feature estimation 
Does this additional information have any potential value for

feature estimation? To examine this, we stimulated the retina with
four contrast gratings with different spatial frequencies. An arti-
ficial neural network (‘perceptron’) was used as a classifier that
estimated the original grating frequency from the patterns of gan-
glion cell activity. Conditions in which information about the
occurrence of movement steps was used were compared with
conditions in which this information was not used.

From the recordings, 256-ms intervals were selected and
transformed to bitmaps, which represented the activity pat-
tern of the recorded ensembles (Fig. 5a; see Methods and Sup-
plementary Methods). The perceptron then estimated grating
spatial frequency from single examples of these bitmaps. We
tested two conditions in which estimation was timelocked to
movement steps. Either each bitmap was obtained by locking
the 256-ms time interval to the synchronized spikes of a syn-
chronized cell pair (t = 0; Fig. 5a), or the corresponding bitmap
from the identical movement period was obtained by locking
the time interval to the external trigger signal from the stim-
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ulus computer. For the non-timelocked condition, the time
intervals were chosen randomly in the same movement peri-
ods as above. Thus, identical movement periods were com-
pared in these three conditions, and only the starting points
of the bitmaps differed. As a control, grating frequency was
estimated with randomly chosen time intervals from experi-
ments using stationary gratings.

As expected, estimation was good when timelocked to the
external trigger signal (Fig. 5b; 95.4 ± 2.5% correct; n = 15 syn-
chronized pairs). This agrees with earlier feature estimation stud-
ies that used discriminant analysis or neural network analysis,
together with an external reference signal2,3,5. Estimation with
bitmaps timelocked to synchronized activity yielded significantly
better results (99.0 ± 2.2% correct; n = 15; p = 0.0002; unpaired t-
test). Estimations with randomly chosen bitmaps from wobbling
grating experiments and from stationary grating experiments, by
contrast, were significantly worse (75.4 ± 1.5% and 66.0 ± 2.0%
correct, respectively; n = 15; t-test; p < 0.0001 in both cases) when
compared with the timelocked conditions. The difference between
the latter two conditions was also significant (p < 0.0001).

To measure the precision that is needed to estimate grating
spatial frequency correctly under conditions in which bitmaps
were locked to internal synchronization, we added external tem-
poral noise to each synchronization signal (Fig. 5a, to). Increasing
external noise degraded performance rapidly (Fig. 5c). The drop
was steep for low amplitudes of noise, and noise in excess of about
200 ms resulted in values that were indistinguishable from those
obtained with random start signals.

These results show that grating frequency estimation that is
timelocked to internal synchronization is superior to estimation
that is non-timelocked.

DISCUSSION
Retinal image movement during fixation was composed of three
components: periodic movements were superimposed on small
eye drift and slow head movements. Given that peak amplitudes
varied around the diameter of a photoreceptor, the periodic
component could tentatively be compared with tremor in
humans23. The frequency was about 5 Hz, however, compared
with 70–100 Hz in humans24. This difference in frequency might
be because the turtle is a cold-blooded animal and the tonic fir-
ing of oculomotor neurons is probably reduced25.

The drift components, which were present during stable peri-
ods of gaze, did not evoke significant responses and, more notably,
did not degrade the responses to the periodic components. The
responses to these periodic movements support the idea that
hyperacuity is a general property of the receptive fields of gan-
glion cells26. These cells respond to displacements that are more
than one order of magnitude smaller than the radius of their
receptive field centers. Synchronization driven by these periodic
components reliably encoded the occurrence of movement steps
and was therefore an excellent signal to timelock activity bitmaps
with stimulus changes for feature estimation.

Neural networks have been shown to function exactly like a
linear multineuronal decoder and were used here to estimate the
spatial grating frequency1. Estimation was best when the bitmaps
were timelocked to movement steps. In such a condition, rela-
tive latency and initial spike rate will be contained in each bitmap.
These parameters are the most important variables for discrim-
inating, for example, contrast5. In the turtle, retinal ganglion cells
latencies to light flashes are 100–300 ms (short latencies) or above
400 ms (long latencies)27. The latencies of optimally located syn-
chronized units (90–100 ms) would be short enough to provide
a signal for relative latency determination. In particular, direction-
selective cells might be candidates for short-latency responses to
periodic eye movements21,28.

Estimation was better when timelocked to internal synchro-
nization, as compared with the external trigger signal, although
for an objective observer the external signal is more precise than
the internal synchronization. This result can be explained if the
temporal interdependencies between spikes, which arise from
interactions within the retina, are preserved better than spike
timings with respect to the external signal4. If this is the case,
then the perceptron estimation will be better with internal syn-
chronization as a starting signal, because the activity pattern of
the bitmaps for the different movement steps will be more simi-
lar for a given grating frequency. This will increase the number
of correct estimations.

By contrast, adding external jitter to the internal synchroniza-
tion rapidly degraded feature estimation, as expected. Therefore,
temporal precision seems to be important with respect to internal
synchronization, but not necessarily with respect to the external
signal. This does not exclude higher precision of synchronization
with respect to the external trigger signals29, which we could not
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measure owing to technical limitations (see Supplementary Meth-
ods). This would probably increase further the correct estimation
with synchronization as starting point. Grating frequency estima-
tion with randomly starting bitmaps was well above the chance
rate because some relevant information would still be included in
the bitmaps. For example, the mean activity of the population
depended on grating spatial frequency—both for stationary and
wobbling conditions—and showed an optimum at 1.35 cycles/mm
(data not shown).

The dependence of spike probability and latency from con-
trast border position implies that both movement onset and the
spatial properties of a stationary visual scene are signaled to the
brain. A good strategy for detecting eye movements would involve
examining synchronous activity from large populations of cells—
if eye movements are to be discerned from object movements.
For any given fixational movement, all optimally placed ganglion
cells will respond fastest and with highest probability, and many
will be synchronized with each other. The first strong, synchro-
nized activity will thus arise from the ensemble of cells that rep-
resents the spatial structure of the scene, and this activity will
signal that a stimulus change has occurred. Later incoming activ-
ity can then be used for further feature detection30.

Estimation of simple visual features such as color or intensi-
ty saturates with unexpectedly low numbers of cells1–3,5. Natur-
al scenes from short periods of movies can be reconstructed with
as few as 6–8 pairs of cells for each point in space31. There is no
reason why this should not be possible for stationary objects,
which are transformed actively to a temporally changing retinal
image by eye, head and body movements.

METHODS
Eye movement measurements. We measured miniature eye movements
in three turtles (Pseudemys scripta elegans) using infrared video-oculog-
raphy (Eyelink, SensoMotoric Instruments, Berlin, Germany). The appa-
ratus was adapted for use with turtles. Two cameras measured pupil and
head movements simultaneously (see Supplementary Methods). The setup
was calibrated with an artificial pupil and head in the focal planes. We
obtained different conversion factors for head and eye movements after
applying a schematic turtle eye32 (83.7 µm on the retina per degree of
visual angle for eye movements; 0.44 mm on the retina per mm of dis-
placement on the focal plane of the camera for head movements). We
analyzed data by PowerLab software (AD Instruments, Hastings, UK)
using the FFT, amplitude histogram and differentiate extensions.

Electrophysiological recording. Electrophysiological experiments were
done on 20 isolated retinas from 12 turtles. Animals were killed accord-
ing to the University of Oldenburg Ethical Commitee and to ECC rules
(86/609/ECC). We isolated retinas and made recordings as described,
using the acute Utah 100-electrode array (Bionic Technologies, Salt Lake
City, Utah)3–5,33. The retinas were stimulated via an optical bench with a
Xenon light source (150 W), neutral density filters, shutter and aperture.
Square wave gratings (0.68, 1.35, 2.70 and 5.41 cycles/mm on the retina;
40 lx and 2.6 lx retinal illuminance through the bright and dark stripes,
respectively) were projected onto the retina through an x–y miniature
mirror system (Datronic, Rastede, Germany). We moved the mirrors
using a separate stimulus computer, which was synchronized with the
data acquisition computer.

Data processing and analysis. Typically several spike waveforms occurred
at one electrode. An optimized Kohonen network separated these spike
‘prototypes’ (see Supplementary Methods). In general, multiprototype sig-
nals were obtained from 20 to 60 electrodes. We selected those electrodes
that had waveforms typical of single-unit activity, which were unequivocal
in terms of both amplitude and shape (typically from 10 to 60 prototypes).
Data were stored as a sequence of ‘time-stamped’ events for each unit, and
these events were used for further analysis. Peri-stimulus-time histograms
(PSTH), cross-correlations, shift predictors and 99% confidence limits

were calculated with NEX Neuroexplorer (Nex Technologies, Lexington,
Massachusetts). The 99% confidence limits were calculated assuming that
spike trains are Poisson trains with mean frequencies. Gaussian fits were
done with Mathematica (Wolfram Research, Champaign, Illinois). We
used SPSS (SPSS, Chicago, Illinois) for statistical analysis. Quantitative val-
ues are reported as the mean ± s.d.

Feature estimation. A perceptron with maximal stability was used to esti-
mate grating spatial frequencies on the basis of the recorded activity of
the ganglion cells (see Supplementary Methods)34,35. Time intervals of
256 ms were selected from the data trains, which contained the activity
of all measured units. Each interval contained a 30-ms period before its
locking point, to = 0, and a 226-ms period after to. The preceding 30-ms
period was introduced to take the average temporal width of spike syn-
chronization (32 ms) into account. The 256-ms periods were transformed
to activity bitmaps from which the spatial frequencies of four different
square wave gratings had to be estimated. First, a cell pair was chosen
whose spikes were synchronized by a given wobbling grating. Then all
bitmaps, which were timelocked to the synchronized spike pairs, were
constructed. Ninety were chosen randomly for estimation. This was done
for each grating, which yielded a total of 360 bitmaps. The perceptron
then estimated grating frequency from each of the 360 bitmaps. For each
cell pair the percentage correct was calculated by (number of correctly
assigned bitmaps/360) × 100. This was compared with the estimation per-
formance using bitmaps from the identical movement periods, timelocked
to the external trigger signal, and bitmaps starting randomly within the
same movement periods. We analyzed 15 synchronized cell pairs from
four experiments in this way. As a control, randomly chosen bitmaps from
experiments with stationary gratings were used for estimation. To exclude
effects of neuron number, we used only experiments with more than 30
recorded units for this analysis (see Supplementary Methods).

Note: Supplementary Methods are available on the Nature Neuroscience web site 
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