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INTRODUCTION

In human visual search, the time required to detect an object that starts to move
is approximately independent of the number of distractors in the visual field (pop-
out effect)1. Motion onset is therefore considered as being a “basic feature”. Several
theoretical models of the visual system attempt to explain the interplay of such basic
features, attentional selection, and higher-level processing2,3,4,5. Local contrast of basic
features is thought to be calculated in parallel across the visual field in a first step.
On the basis of this feature contrast computation, salient positions are determined.
The most salient one is then selected by some form of winner-take-all mechanism, the
output of which is used to direct attention to this potentially most interesting part of
the visual scene.

As salient visual stimuli are first processed by the retina, we use multi-electrode
recordings to determine the response of turtle retinal ganglion cells (RGCs) to bright
bars rapidly starting and stopping their motion. We describe the measured population
activity with a computational model that includes a nonlinear negative feedback loop
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originally used for contrast gain control (CGC). As the retinal activity itself does not
exhibit the characteristics needed to signal motion onset saliency, we finally apply
two adaptive mechanisms by which the retinal response is tranformed into a feature
contrast signal. This may be used within the framework of the attentional models
described above to guide attention towards objects suddenly starting to move.

RETINAL RESPONSE TO STEPWISE MOTION

Experimental paradigm

Experiments were performed on isolated turtle retinae. The instantaneous dis-
charge rate of a population of ganglion cells was computed after recording their action
potentials with a multi-electrode array. Details of the experimental preparation, the
recording setup, and the data processing are described elsewhere6. The stimulus used
was a bright bar (width=0.1 mm) on a dark background projected onto the retina.
This bar was moved uniformly with a speed of 0.44 � m/ms in the direction perpendic-
ular to its orientation. Motion lasted for an interval of 500 ms, after which the bar
remained stationary for another 500 ms. Following this pause, motion continued for
500 ms until the next pause. This cycle was repeated until the stimulus had crossed
the whole retina.

Computational retina model

A computational model is used to describe the observed retinal population firing
rate. The RGC activation u(r, t) at position r = (x, y) (in � m on the retina) at time t
is obtained by convolving the spatiotemporal contrast pattern of the stimulus s(r, t)
with a kernel function K(r, t):

u(r, t) = g(r, t) [K(r, t) ∗ s(r, t − δt)] . (1)

g(r, t) is a modulation factor which will be specified below, δt > 0 is the response
latency, and “∗” denotes the convolution operator.

K(r, t) is designed to mimic the RGCs’ receptive field (RF) properties. Assuming
space-time separability, the kernel is split into a spatial part described by a difference
of Gaussians and a temporal component with high-pass characteristics7:

K(r, t) = Ks(r) Kt(t) , (2)
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, (3)

Kt(t) = δ(t) − αH(t) exp(−αt) . (4)

H(·) denotes the Heaviside step function. The parameters g+ and g− determine the
relative weights of center and surround, respectively, while σ+ and βσ+ (with β > 1) are
their diameters. In the temporal part, α−1 is the decay time constant of the response.

From the activation u(r, t), the instantaneous population firing rate is computed
by a rectification to exclude negative firing rates, and a spatial integration over the
retinal area A considered.

f(r, t) = α̃ [u(r, t) + Θ]
+

, (5)

R(t) =
∫

A

f(r, t)dr , (6)
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where α̃ and Θ ≥ 0 determine scale and baseline of the firing rate, respectively; [x]+ :=
xH(x) is the rectification operator. Apart from α̃, Θ and α, the numerical values of
the parameters are not critical for the model’s temporal characteristics. Thus, they
are matched to results from other experiments: β = 3 and g− = 0.8 g+ is chosen for
the spatial part of the kernel7. This is consistent with the study of Smirnakis et al.8,
yielding a reasonable excitatory/inhibitory RF weight ratio of s = 1.55. A RF radius
of σ+ = 80 � m is chosen8.

A CGC feedback loop is included in the model via the modulation factor g(r, t)
in equation 1. g(r, t) is computed by first feeding the activity u(r, t) into a temporal
low-pass filter and then applying a static nonlinearity to the filtered result:

v(r, t) := B u(r, t) ∗ [H(t) exp(−t/τ)] , (7)

g(r, t) =
1

1 + {[v(r, t)]+}4
. (8)

The parameters B and τ govern the strength and the time course of the CGC modula-
tion, respectively. Functionally, this feedback loop generates a delayed local suppression
of high, sustained RGC activation, thus altering the temporal characteristics of RGC
firing rates. The form of CGC described above was originally suggested by Berry II
et al.9 and used to explain retinal motion anticipation effects. Setting the parameters
g+ = 3, α = 4Hz, and τ = 170ms reproduces the qualitative behavior shown in Fig-
ure 3 of the abovementioned publication9. The low decay rate α = 4Hz is crucial for
our conclusions, we therefore verified it by comparing it to values obtained from flash
stimulation10 and reverse correlation8.

Experimental results and parameter adjustment

The mean population discharge rate in response to a succession of stepwise uniform
movements is shown in Figure 1. After the onset of motion, there is a response latency
of about 100ms. Within another 100ms, the retina signals motion onset by a 100% rise
in activity. During the time following this signal, the population activity remains fairly
constant, corresponding to the response to continuous movement. At motion offset, the
retinal activity exhibits an equally steep drop and thus closely follows the movement
pattern.

We reproduce the observed behavior with the retina model by adjusting its param-
eters B, Θ, and α̃. Parameter fitting is performed by minimizing the average squared
difference between experimental data and model prediction according to three scenar-
ios: Scenario I represents the full model with CGC. To demonstrate the CGC’s ability
of accelerating the response, it was “turned off” in scenario II by setting B =0. Finally,
scenario III allows the linear time constant α to be changed as well while still B =0.

Comparing the ability of the three model scenarios to describe the time course of
retinal population activity, one finds that only scenario I yields good agreement between
model and experimental data (adjusted parameters: α̃ =79Hz, B =78Hz, Θ=0.005).
Scenario II fails to exhibit a steep slope at beginning motion (α̃ =30Hz, Θ=0.015). Al-
though the unusually large value of α in scenario III (α̃ =104Hz, Θ=0.005, α=24Hz)
results in a sufficiently quick rise at motion onset, activity decays much slower after
motion stops in reality than predicted by scenario III. A point not captured by any
of the models is that the maximum signal is generated early in each motion phase.
Instead, the models yield the highest response at the end of the movement.

3



Figure 1: Upper panel: Population response of turtle retinal ganglion cells
(solid, 219 RGCs, 450 stimulus repetitions) to stepwise motion of a bright bar
(width 100 � m, periods of movement from t = 0ms to t = 500ms and from
t = 1000ms to t = 1500ms) as a function of time. Shaded area indicates
standard error. Corresponding output of the retina model with contrast gain
control loop (scenario I, dashed), without contrast gain control (scenario II,
dot-dashed), and without contrast gain control but with adjusted linear time
constant (scenario III, dotted). Lower panel: Deviation Di(t) of the mean
experimental population discharge rate Rexp(t) and scenario i’s prediction

Ri(t): Di(t) :=
√

(Rexp(t) − Ri(t))2/σm(t) for i =I,II,III, where σm(t) de-
notes the standard error of Rexp(t).

SALIENCY COMPUTATION

Differentiation by adaptive mechanisms

An assumption used in most attentional models is that saliency is coded in the
firing rate of the neurons forming the feature map. From this viewpoint, the popu-
lation of RGCs itself does not generate a signal that expresses the saliency of motion
onsets, as activity right after the bar has started to move is only slightly higher than
during continuous stimulation (see Figure 1). Nevertheless, the faithful representation
of movement by the retinal activity can be used as a basis for saliency computation.
Mathematically, the signal leaving the retina must be differentiated to detect motion
onsets. This differentiation can approximately be accomplished by neurons in the next
processing stage that exhibit fatigue or depletion when receiving constantly high reti-
nal input but recover during low activity. Such “postretinal neurons” (PRNs) should
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therefore be sensitive to the steeply rising activity at motion starts because these are
preceded by pauses due to motion stops. In particular, depressive synaptic transmission
and fatigue in spike generation are plausible candidate mechnisms with the character-
istics mentioned above. PRNs that are sensitive to temporal structure of their input in
this way are capable of computing motion onset saliency. They may then be arranged
in a retinotopic feature map to represent the position of the salient stimulus, to select
the most salient position, and to direct attention to that position in the same way
used in former attentional models. Neurons of this kind may be found in the superior
colliculus, where they could direct saccades to objects suddenly starting to move.

Depressive synaptic transmission

Depressive synaptic transmission is modeled according to Tsodyks and Markram 11.
The mean postsynaptic current (PSC) P (r, t) of a single synapse in response to the RGC
firing rate f(r, t) is proportional to

P (r, t) ∝ τinUf(r, t)
1

τrec

t
∫

−∞

dt′ exp



−
t − t′

τrec

− U

t
∫

t′

dθ f(r, θ)



 , (9)

Upon the arrival of each presynaptic spike, a certain amount of neurotransmitter U (the
“use parameter”) is released, which is replaced afterwards with constant rate 1/τrec. If
spikes arrive too often, depletion dominates regeneration and prevents the transmission
of the presynaptic signals. In contrast, rapid increases in firing rate preceded by low
activity lead to high PSCs because the amount of available transmitter has had the
chance to recover12. Figure 2 shows the PSC calculated from the model responding to a
single motion onset for different use parameter values. In the simulations, we chose the

Figure 2: Normalized mean postsynaptic current (PSC) of depressive
synapses evoked by motion onset responses of simulated retinal ganglion
cells as a function of time. The mean PSC in response to continuous motion
was normalized to unity. Curves were obtained with use parameter U = 0.1
(dotted), U = 0.5 (dashed), and U = 0.9 (solid).
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generic values τin = 3ms and τrec = 800ms given by Tsodyks and Markram11, whereas
U varied between 0.1 and 0.9. The PSCs at all mesh points were averaged at each
time step to obtain a measure of mean population PSC. The low activity before motion
starts allows for transmitter recovery, such that immediately after motion start the PSC
exhibits an overshoot that becomes more prominent with increasing use parameter.

Adaptive action potential generation

To analyze processing of motion information in PRNs, we simulated a population
of leaky integrate-and-fire neurons (N =20) with adaptive spike generation using a
dynamic threshold13,14. Single cell spiking behavior and population activity in response
to light bars crossing the cells’ RFs are compared for continuous as opposed to stepwise
stimulus motion. Assuming that one PRN receives signals from a whole population of
RGCs due to dendritic integration, the measured retinal activity can be used as the
input signal I(t) to one of the model cells. Cell i’s membrane potential Mi(t) is then
calculated by low-pass filtering this input signal,

Mi(t) = I(t) ∗
[

H(t) exp(−t/τm)
]

. (10)

When Mi(t) exceeds cell i’s threshold θi(t), a spike is generated in the following simu-
lation time step t + ∆t:

Oi(t + ∆t) = H(Mi(t) − θi(t)) . (11)

θi(t) is the sum of a static offset θ0 and two dynamic parts θr and θs. Both of them
are increased each time cell i generates an action potential and decay exponentially
afterwards:

θi(t) = θ0 + Oi(t) ∗
[

H(t)(Vθr exp(−t/τθr) + Vθs exp(−t/τθs))
]

. (12)

θr has a large increase factor Vθr =1.0 and a short time constant τθr =20ms, modeling
the cell’s relative refractory period. θs’s increase factor Vθs =0.1 is smaller, while its
time constant τθs =300ms is larger, mimicking slowly accumulating fatigue in spike
generation.

In the stepwise motion column of Figure 3, times (1) and (2) indicate the start
and stop of a single motion step respectively. During this time interval, cell i=10 fires
several spikes. Although in the case of continuous motion, the bar passes the same
receptive field positions with the same velocity between the corresponding times (1)
and (2), only one action potential is generated. The single cell’s behavior is reproduced
in the activity of the population of PRNs. Population activity is much higher during
stepwise stimulation compared to the continuous condition.

The model cells’ behavior is caused by the recovery of the spike generation mech-
anism. In the case of continuous motion, the constant retinal input results in a high
membrane potential, repetitive firing, and an increase of the slow threshold component
θs, thereby reducing the number of spikes generated. The low retinal input during
motion pauses allows θs to decrease, such that immediately after the following motion
onset, spike generation is facilitated until θs has built up again.
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Figure 3: Input current (top) and action potentials generated by a single
(neuron i =10, middle) and by a population (N =20, bottom) of postretinal
model cells responding to two different motion patterns (left and right col-
umn). In the stepwise motion column, motion periods are depicted by gray
areas, and times (1) and (2) indicate the start and stop of a single motion
step respectively. In the case of continuous motion, the bar passes the same
receptive field positions with the same velocity at corresponding times (1)
and (2), but without preceding and subsequent pausing.

SUMMARY

By recording ganglion cell population discharge rates using a multi-electrode array,
we have shown that the time course of this activity closely reflects rapid velocity changes
of a stepwise moving stimulus. An extremely sharp rise in the activity signals motion
onsets, but its amplitude does not increase beyond the level measured in response
to continuous movement. The steep and quick rise of the RGC population rate was
described using a computational model with a CGC feedback loop. Models without
this non-linear element can also explain the fast response, but at the expense of very
small time constants, which were shown to be inconsistent with our and several other
previous studies. Thus, CGC plays a crucial role in the detection of movement onset.

Moreover, we have shown that the RGC response to motion patterns can be trans-
formed into a saliency signal with sharp peaks at each motion onset by neurons in the
following processing stage. This was demonstrated using two different mechanisms:
Depressive synaptic transmission and dynamic thresholds in PRNs. In both cases, an
adaptive element inhibits the high-amplitude retinal input during the movement periods
but recovers during the pauses, which allows for a strong response upon the subsequent
motion onset. Neurons sensitive to temporal feature contrast in this way could then
be the components of a retinotopic feature map. An attentional model including this
feature map would exhibit a preference for motion onsets and could thus be capable of
explaining the high saliency of objects that suddenly start moving.
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